Presents:
Dr. Richard L. Lieber
University of California, San Diego
rlieber@ucsd.edu

Monday
January 12, 2009
4:00 p.m.
Refreshments will be served 3—4 p.m.

Biological and Biomechanical Basis of Skeletal Muscle Injury

Richard L. Lieber
Departments of Orthopaedic Surgery and Bioengineering

Forced lengthening of skeletal muscles (i.e., “eccentric contractions”) produce injury and, ultimately, muscle strengthening. Such contractions are common in everyday movements as well as sports activities. Because they are mechanically unique and have dramatic biological consequences, it is becoming increasingly popular to study the mechanics and biology of eccentric contraction-induced muscle injury. Current data suggests that the earliest events associated with injury are mechanical in nature and are based primarily on sarcomere strain. Such strain results in relatively rapid breakdown or reorganization of cytoskeletal elements within the muscle cell can cause waves of muscle-specific gene expression. We have developed animal models of muscle injury that mimic the effects seen in humans. In addition, the use of muscles with “knocked out” or modified cytoskeletal proteins give insights into load bearing and transmission in skeletal muscle. Ultimately, an improved understanding of the damage mechanism may improve our ability to provide rehabilitative and strengthening prescriptions that have a rational scientific basis.

BIOSKETCH

Professor: Department of Orthopaedic Surgery and Bioengineering
Education: March 1983, Ph.D (Biophysics, Electrical Engineering minor)
Department of Zoology, University of California, Davis
June 1978, B.S. Animal Physiology
University of California, Davis

Locations:
Seminar is simultaneously presented

HSC: CHP 147 - LIVE
Center for the Health Professional
HSC Campus Map/Directions:
http://www.usc.edu/about/visit/hsc/

UPC: HNB 100 – Video Conference
Hedco Neurosciences Building
UPC Campus Map/Directions:
http://www.usc.edu/about/visit/upc/

Web Cast
http://capture.usc.edu/college/Catalog/?cid=af180d48-ceff-42b9-a35c-eb199daed320

Information about all seminars can be found at
http://www-clmc.usc.edu/~heiko/ENH